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Abstract
The geometry and the mechanics of generalized pseudo-rigid bodies are studied.
The configuration space of a generalized pseudo-rigid body is the linear
group, P := GL+(n, R), of non-singular matrices with a positive determinant.
It admits the left and right actions of SO(n) and the two-sided action of
SO(n) × SO(n). The left and right SO(n) actions on P are both free, so
that P is made into respective principal fiber bundles according to the left and
right SO(n) actions, and further left and right connections can be defined on
the respective fiber bundles. However, the two-sided SO(n) × SO(n) action
is not free on P , and hence P is not made into a principal fiber bundle with
respect to this action. In spite of this, if P is restricted to an open dense
subset Ṗ , the isotropy subgroup at each point of Ṗ is a finite discrete group, so
that the quotient space (SO(n) × SO(n))\Ṗ becomes a manifold, and further
one can define a connection on Ṗ , which will be called a bi-connection. The
bi-connection is used to reduce the pseudo-rigid body system on T ∗Ṗ with
the SO(n) × SO(n) symmetry. Though in the cotangent bundle reduction
theorem and its variants, one usually assumes that the action of a Lie group on
the configuration space is free, or that the isotropy subgroup of the Lie group
is trivial, the reduction procedure works well if the isotropy subgroup is not
trivial but a finite group. As an application of the reduction procedure, relative
equilibria are discussed in relation with the reduced Hamilton and Lagrange
equations of motion. A necessary and sufficient condition is given for a relative
equilibrium in terms of an amended potential on the reduced phase space.

PACS numbers: 02.40.−k, 02.40.Yy

1. Introduction

A pseudo-rigid body (or affine-rigid body) is a body which is deformable by orientation
preserving linear maps [1]. The pseudo-rigid body can be viewed as a generalization of a
rigid body and, at the same time, as a particular case of continuum. According to Dirichlet
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and Riemann, a Riemann ellipsoid is a self-gravitating, constant mass-density fluid with an
ellipsoidal boundary and with a velocity field that is a linear function of the Cartesian position
coordinates in an inertial center-of-mass frame [3–5]. The classical theory of Riemann
ellipsoids was summarized and further developed in [6].

This paper studies the geometry and mechanics of pseudo-rigid bodies. The configuration
space of a generalized pseudo-rigid body is the linear group, GL+(n, R), of non-singular
matrices with a positive determinant. The GL+(n, R) may be viewed as the center-of-mass
system of n + 1 particles in Rn, where the column vectors of X ∈ GL+(n, R) are viewed as
the Jacobi vectors for the n + 1 particles which are assumed to form configurations such that
det X > 0.

The GL+(n, R) admits the left and right actions of SO(n). Since respective actions are
free, GL+(n, R) is made into a principal fiber bundle, and endowed with a connection in
respective manners. The connections that Rosensteel defined on GL+(3, R) [5] are examples
of these connections. In contrast with this, one may consider the left and right SO(n) actions
simultaneously. However, the two-sided SO(n) × SO(n) action on GL+(n, R) is not free, so
that GL+(n, R) is not made into a principal bundle, and one cannot define a connection on
GL+(n, R) in the usual manner. In spite of this, if GL+(n, R) is restricted to an open dense
subset, the isotropy subgroup at each point of it is a finite discrete subgroup, and hence the
orbit space by the two-sided action becomes a manifold, so that the idea of connection can
work in this case. According to the decomposition of the tangent space into a direct sum of
horizontal and vertical subspaces, a connection form can be defined, which will be called a
bi-connection. In describing the connection form, the ‘bi-inertia’ tensor is introduced. The
introduction of the bi-inertia tensor and the bi-connection gives a new insight into the study of
pseudo-rigid bodies or Riemann ellipsoids from the view point of symmetry reduction theory.
If GL+(n, R) is endowed with a natural Riemannian metric, the bi-connection is shown to be
equal to a mechanical connection [7] associated with a locked inertia tensor with respect to
the SO(n) × SO(n) action.

The mechanics for pseudo-rigid bodies is set up on the tangent/cotangent bundle over
GL+(n, R), and the pseudo-rigid body system with SO(n) × SO(n) symmetry is reduced by
the use of the bi-connection. The reduction by the right SO(n) symmetry is also studied,
which is a slight extension of [4, 8], though [4, 8] treated the mechanics in Poisson formalism.

If the group action of SO(n)×SO(n) were free, the reduction procedure to be performed
for the pseudo-rigid body would be an example of the theorem known as the cotangent bundle
reduction theorem [7, 9, 10].

The cotangent bundle reduction theorem. Assume that G acts freely and properly on a
configuration space Q. Then the reduced symplectic manifold from T ∗(Q) is a fiber bundle
over T ∗(Q/G) with fiber being the coadjoint orbit Oμ through μ ∈ g.

However, since the isotropy subgroup of SO(n) × SO(n) is a finite group, the reduction
procedure with the SO(n) × SO(n) symmetry will run in parallel with that in the above
theorem with a slight modification.

The organization of this paper is as follows. Section 2 contains the geometric setting
associated with the left and right SO(n) actions. The connections associated with the left
and right SO(n) actions are defined, respectively. Section 3 deals with the reduction by
the right SO(n) symmetry, which is a generalization of [3, 4]. The reduction is performed
in both Lagrangian and symplectic manners. In section 4, Lagrangian and Hamiltonian
mechanics are set up for pseudo-rigid bodies in terms of local coordinates associated with
the SO(n) × SO(n) action on GL+(n, R). Section 5 is specialized in the three-dimensional
case. Section 6 is concerned with the SO(n) × SO(n) action. It starts with the study of the
two-sided SO(n) × SO(n) action on the configuration space, and then gives the definitions
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of the bi-inertia tensor and the bi-connection. It is shown that the bi-inertia tensor is equal to
the so-called locked inertia tensor [7] associated with the SO(n) × SO(n) action. Section 7
deals with the symplectic reduction of the pseudo-rigid body system with SO(n) × SO(n)

symmetry by the effective use of the bi-connection. Further, the reduced system is described
in terms of local coordinates. In section 8, relative equilibria are discussed. A necessary and
sufficient condition is given for an orbit of a one-parameter subgroup of SO(n) × SO(n) to
be a solution curve of the pseudo-rigid body. Section 9 contains concluding remarks on the
reduction procedure and on the commuting reduction theorem [11, 12] in addition.

2. Geometric set-up with left and right SO(n) actions

2.1. Configuration space of a pseudo-rigid body

The configuration space for a generalized pseudo-rigid body is

P := GL+(n, R) = {X ∈ Rn×n| det X > 0}, (2.1)

where Rn×n denotes the set of n × n real matrices. The rotation group SO(n) acts freely on
P both to the left and to the right,

Lg : X �→ gX, Rh : X �→ Xh−1, (2.2)

where g, h ∈ SO(n). With respect to each SO(n) action, the configuration space can be made
into a principal fiber bundle with the base space Q := Sym+(n, R), the set of n × n positive
definite real symmetric matrices. Then, according to the left and right SO(n) actions, the
projection maps P → Q are given by

πL : X �→ X�X, πR : X �→ XX�, (2.3)

respectively, where X� denotes the transpose of X. These fiber bundles are trivial, since
Q = Sym+(n, R) is contractible.

Though we can treat two-sided SO(n) × SO(n) action on P as well, we will postpone it
to section 6. However, we here use the two-sided action only to introduce a coordinate system
in P = GL+(n, R). Let

X = RAS−1 (2.4)

be a singular value decomposition of X ∈ P , where R, S ∈ SO(n) and where A is a diagonal
matrix with positive real diagonal entries; A = diag(a1, . . . , an), a1 � · · · � an > 0. The
decomposition is not unique. Another decomposition proves to be expressed as

X = RDADS−1, D = diag(ε1, . . . , εn), εj = ±1, det D = 1. (2.5)

Thus, we have the following.

Lemma 2.1. Let Ṗ and Ḋ denote the subset of P whose singular values are all distinct and
the set of diagonal matrices A = diag(a1, . . . , an) with entries such that a1 > · · · > an > 0,
respectively. Then the map

ψ : SO(n) × Ḋ × SO(n) → Ṗ, (R,A, S) �→ X = RAS−1 (2.6)

is 2n−1-fold.

In spite of this, we are allowed to use (R,A, S) as local coordinates of Ṗ with D
fixed. In particular, (R,A) and (A, S) serve as local coordinates of Ṗ/SO(n) and SO(n)\Ṗ ,
respectively.
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We denote the canonical inner product on Rn×n by

〈A,B〉 := tr(A�B), A,B ∈ Rn×n. (2.7)

Restricted on the Lie algebra so(n) of SO(n), this inner product induces that on so(n).
However, for so(n), we adopt the following definition and notation:

〈ξ, η〉so(n) = 1

2
tr(ξ�η) =

∑
i<j

ξij ηij , ξ = (ξij ), η = (ηij ) ∈ so(n). (2.8)

With respect to this inner product, the dual space so(n)∗ is identified with so(n).
The inner product (2.7) induces the Riemannian metric on P:

ds2 := tr(dX�dX). (2.9)

The reason why this metric is chosen is explained as follows. We assume that we have a
pseudo-rigid body whose constituent particles are labeled by uα at the initial instance, where
α may be continuous indices. Then, the kinetic energy T is given by and expressed as

2T =
∑

α

Ẋuα · Ẋuα = tr

(
Ẋ�Ẋ

∑
α

uαu�
α

)
, (2.10)

where Ẋ and Ẋuα denote the time derivative of X and the velocity vector of the constituent
particle labeled by uα , respectively, and where the center dot stands for the standard inner
product on Rn. If the α are continuous indices, the summation is replaced by the integral over
the region occupied by the pseudo-rigid body at the initial instance. Since Q := ∑

α uαu�
α

is a positive symmetric matrix for the pseudo-rigid body which has an open subset in it,
there exists a positive symmetric matrix Q1/2 such that the kinetic energy is written as
2T = tr((ẊQ1/2)�ẊQ1/2). This allows us to choose XQ1/2 to be a new variable in GL(n, R)

and to rewrite XQ1/2 as X. Then, the kinetic energy is put in the form 2T = tr(Ẋ�Ẋ), which
leads to the metric (2.9).

2.2. Left and right connections

We now define connections on both the fiber bundles πL : P → SO(n)\P and πR : P →
P/SO(n).

Proposition 2.2. The maps AL
X,AR

X : so(n) → so(n) with X ∈ P are defined to be

AL
X : ξ �→ XX�ξ + ξXX�, AR

X : ξ �→ X�Xξ + ξX�X, (2.11)

and called the left and right inertia tensors, respectively. Both AL
X and AR

X are symmetric and
positive-definite with respect to the inner product (2.8) on so(n), and then they are invertible.
Furthermore, for g, h ∈ SO(n), the left and right inertia tensors transform, respectively,
according to

AL
gX = Adg ◦ AL

X ◦ Adg−1 , AL
Xh−1 = AL

X, (2.12)

AR
gX = AR

X, AR
Xh−1 = Adh ◦ AR

X ◦ Adh−1 . (2.13)

Since the proof is straightforward, we do not describe it here. Using the inertia tensors,
we define connection forms.

Proposition 2.3. Let ωL and ωR be so(n)-valued forms defined to be
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ωL
X := (

AL
X

)−1
(dX X� − X dX�), (2.14)

ωR
X := (

AR
X

)−1
(dX�X − X� dX), (2.15)

respectively, where X ∈ P . Then, the ωL and ωR are shown to satisfy the following:

ωL
X (ξX) = ξ, ωL

gX = Adg ◦ ωL
X, (2.16)

ωR
X(Xη�) = η, ωR

Xh−1 = Adh ◦ ωR
X, (2.17)

respectively, where g, h ∈ SO(n) and ξ, η ∈ so(n). ωL and ωR are called the left and right
connection forms on the fiber bundles πL : P → Q and πR : P → Q, respectively.

The proof is straightforward and omitted.
Let OL

X and OR
X denote the SO(n) orbits through X ∈ P by the left and right actions,

respectively, and

HL
X := ker ωL

X, V L
X := TX

(
OL

X

)
, (2.18)

HR
X := ker ωR

X, V R
X := TX

(
OR

X

)
, (2.19)

be the horizontal and vertical subspaces with respect to the connections ωL and ωR ,
respectively. The horizontal subspaces turn out to be expressed as

HL
X = {Y ∈ TXP|YX� = XY�}, (2.20)

HR
X = {Y ∈ TXP|Y�X = X�Y }, (2.21)

respectively. As is well known, the tangent space at X ∈ P is decomposed into a direct sum
of the vertical and horizontal subspaces with respect to ωL and ωR , respectively:

TX(P) = HL
X ⊕ V L

X , TX(P) = HR
X ⊕ V R

X . (2.22)

As is easily shown, the vertical and horizontal subspaces are orthogonal to each other with
respect to the metric (2.9), in both cases.

2.3. Remarks on the left and right connections

We now show that the connection ωL is an extension of the connection that Guichardet defined
for many-body systems [13]. For simplicity, we assume that we work in three dimensions.
Let xα and mα denote the positions and the mass of the particle labeled by α, respectively.
Then, the inertia tensor A : R3 → R3 is defined to be a linear map expressed as

A(v) =
∑

α

mαxα × (v × xα), v ∈ R3, (2.23)

and the connection form ω is defined to be

ω = R
(∑

α

mαxα × dxα

)
, (2.24)

where R : R3 → so(3) is the isomorphism defined through R(a)x = a × x with a,x ∈ R3

(see also [14]). Operated with R, the defining equation of A is put in the form

R(A(v)) = QXR(v) + R(v)QX, QX :=
∑

α

mαxαx�
α . (2.25)
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In the case of a pseudo-rigid body, we may formally assume that the mass distribution is
homogeneous and that QX = XX�. On rewriting R(v) as ξ ∈ so(3) and introducing
AX : so(3) → so(3) by AX(R(v)) = R(A(v)), we come to the definition of the left inertial
tensor in three dimensions. Moreover, the connection form given above is brought into

ω = A−1
X

(
−
∑

α

mαxα dx�
α +

∑
α

mα dxαx�
α

)
. (2.26)

If
∑

α mαxα dx�
α and

∑
α mαxα dx�

α are replaced by X dX� and dXX�, respectively, the
above connection form falls into ωL with n = 3. Hence, the ωL proves to be a natural
generalization of Guichardet’s connection.

For comparison’s sake, we now show that the inertia tensors AL
X and AR

X are equal to the
locked inertia tensors [7] associated with the left and right SO(n) actions, respectively. Let
〈〈 , 〉〉 denote the inner product for vector fields on P , which is determined by (2.9). For ξ ∈
so(n), we denote the induced vector field on P by ξL

P (X) and ξR
P (X) according to the left and

right actions, respectively. Then, the locked inertia tensors I
L(X) : so(n) → so(n)∗ ∼= so(n)

and I
R(X) : so(n) → so(n)∗ ∼= so(n) are defined accordingly by

〈IL(X)ξ, η〉so(n) = 〈〈
ξL
P (X), ηL

P(X)
〉〉
, 〈IR(X)ξ, η〉so(n) = 〈〈

ξR
P (X), ηR

P (X)
〉〉
, (2.27)

respectively. Since ξL
P (X) = ξX and ξR

P (X) = Xξ�, we can calculate the right-hand sides of
the above-defining equations to obtain〈〈
ξL
P (X), ηL

P(X)
〉〉 = 〈AL

X(ξ), η〉so(n),
〈〈
ξR
P (X), ηR

P (X)
〉〉 = 〈

AR
X(ξ), η

〉
so(n)

. (2.28)

Equations (2.27) and (2.28) are put together to imply that I
L(X) = AL

X and I
R(X) = AR

X.
Needless to say, the left and right inertia tensors AL

X and AR
X are defined independently of the

metric on P . Further, the connections ωL and ωR are also viewed as mechanical connections
[7]. As stated also in [7], the mechanical connection originated from [13, 15].

2.4. Angular momentum and circulation

We have here to remark that the connection forms are closely related with the angular
momentum L and the circulation 	, which are defined to be

L := ẊX� − XẊ�, 	 := Ẋ�X − X�Ẋ, (2.29)

respectively, where Ẋ denotes a tangent vector to P at X ∈ P . The nomenclature ‘angular
momentum’ and ‘circulation’ comes from [4]. If n = 3, L and 	 are associated with those
vectors called the angular momentum and the circulation with respect to the space frame (see
section 5). From the definition of L and 	, one has

ωL
X(Ẋ) = (

AL
X

)−1
(L), ωR

X(Ẋ) = (
AR

X

)−1
(	). (2.30)

From (2.20), (2.21) and (2.30), it turns out that Ẋ ∈ HL
X ⇔ L = 0 and Ẋ ∈ HR

X ⇔ 	 = 0.
Put another way, a curve X(t) is horizontal with respect to the left (resp. right) connection if
and only if the angular momentum (resp. the circulation) vanishes along X(t).

Further, we remark that the angular momentum and the circulation are, respectively,
subject to the transformation, under the left and right SO(n) actions:

L(gX, gẊ) = AdgL(X, Ẋ), L(Xh−1, Ẋh−1) = L(X, Ẋ), (2.31a)

	(gX, gẊ) = 	(X, Ẋ), 	(Xh−1, Ẋh−1) = Adh	(X, Ẋ). (2.31b)

In terms of the local coordinates (R,A, S), the angular momentum and the circulation
are expressed, respectively, as

6
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L := R(
A2 + A2
 − 2A�A)R−1, (2.32a)

	 := S(�A2 + A2� − 2A
A)S−1 (2.32b)

where


 := R−1Ṙ, � := S−1Ṡ. (2.33)

2.5. A remark on circulation

Kelvin’s circulation is defined to be the integral
∫
C

v ·dx, where C is a closed loop in the fluid,
and where v and x are the velocity field and the position vector of the fluid particle, respectively.
According to the assumption of the Riemann ellipsoid, the position vector is linear in the
labeling vector of the constituent particle: x = Xu. Since the particle motion is expressed as
x(t) = X(t)u, and since the loop C is drawn at an arbitrarily fixed time, one has v = Ẋu and
dx = X du. Pulling back v to the u-space, one has v · dx = V · du, where V = X�Ẋu.
We denote by C0 the closed curve pulled back from C and set V := X�Ẋ = (Vij ). Then, the
circulation is rewritten, by the application of the Stokes theorem, as∫

C

v · dx =
∫

C0

V · du =
∫

C0

∑
i,j

Vijuj dui =
∫

S0

d

(∑
i,j

Vijuj dui

)
, (2.34)

where S0 is a surface with the boundary C0. The right-hand side of the above equation is
expanded to give∫

S0

d

(∑
i,j

Vijuj dui

)
= 1

2

∫
S0

∑
i,j

(Vji − Vij ) dui ∧ duj = 1

2
tr((V � − V )�ζ ), (2.35)

where ζ is the anti-symmetric matrix with entries

ζij =
∫

S0

dui ∧ duj . (2.36)

The above discussion is true in n dimensions, so that one has
∫
C

v · dx = 〈V � − V, ζ 〉so(n).
Since the matrix ζ is arbitrary, we may refer to V �−V = Ẋ�X−X�Ẋ as the circulation taking
values in so(n). The exterior derivative of v ·dx is called the volticity, and so is that of V ·du.
However, on account of the above equation, we have chosen to call V � − V = Ẋ�X − X�Ẋ

the circulation according to [4].

3. Reduction by right SO(n) symmetry

Suppose we have a Lagrangian L(X, Ẋ) on the tangent bundle T (P). As is easily verified,
the Euler–Lagrange equation is expressed as

d

dt

(
∂L
∂Ẋ

)
− ∂L

∂X
= 0. (3.1)

If the Lagrangian is right SO(n) invariant, i.e. L(Xh−1, Ẋh−1) = L(X, Ẋ) for h ∈ SO(n),
Noether’s theorem provides the conserved quantity associated with a one-parameter subgroup
h(τ) = exp(τη) with τ ∈ R and η ∈ so(n). Since the Lagrangian for a pseudo-rigid body is
assumed to be of the form

L = 1
2 tr(Ẋ�Ẋ) − U(X), (3.2)

7
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the conserved quantity takes the form〈
∂L
∂Ẋ

,Xη�
〉

= 〈Ẋ�X − X�Ẋ, η〉so(n). (3.3)

Since η ∈ so(n) is arbitrary, we find that the circulation 	 = Ẋ�X − X�Ẋ is conserved. We
note here that the Kelvin circulation theorem or the conservation of the circulation is known
to be related to the particle relabeling symmetry [16, 17]. In our case, the particle relabeling
is associated with the right SO(n) action.

We wish to perform the reduction procedure in the Lagrangian formalism in order to
show that the theory of Riemann ellipsoids [3, 4] is generalized to that in n dimensions. For
comparison’s sake, we apply also the (co)tangent bundle reduction theorem, since SO(n) acts
freely and properly on P to the right.

3.1. Lagrangian reduction

Since the Lagrangian is right SO(n) invariant, the pseudo-rigid body can be reduced to that
on T (P)/SO(n). To derive reduced Euler–Lagrange equations on T (P)/SO(n), we start by
choosing adaptive coordinates on T (P)/SO(n). Right SO(n) invariant quantities can serve
as local coordinates on T (P)/SO(n), among which we take up

Q := XX�, N := XẊ�. (3.4)

The Q and N are called the quadrupole moment [2] and the shear tensor, respectively, and used
in the study of Riemann ellipsoids [3, 4].

We here make remarks on the variables Q and N. Let

T (P) � P × gl(n, R) (3.5)

be the right trivialization of the tangent bundle of P = GL+(n, R). Then, the right and left
actions of SO(n) are lifted to those on P × gl(n, R) and expressed as

(X, η) �→ (Xh−1, η), (h, η) ∈ SO(n) × gl(n, R), (3.6a)

(X, ξ) �→ (gX, Adgξ), (g, ξ) ∈ SO(n) × gl(n, R), (3.6b)

respectively. According to (3.6a), the factor space T (P)/SO(n) turns out to be

T (P)/SO(n) � (P/SO(n)) × gl(n, R). (3.7)

The variables (Q,N) are viewed as coordinates of the right-hand side of the above equation.
Furthermore, let gl(n, R) be decomposed into

gl(n, R) = Sym(n, R) ⊕ so(n), (3.8)

where Sym(n, R) denotes the linear space of n × n symmetric matrices. Then, equation (3.7)
is brought into

T (P)/SO(n) � T (P/SO(n)) ⊕ s̃o(n), (3.9)

where the tangent bundle T (P/SO(n)) is identified with P/SO(n) × Sym(n, R), since
P/SO(n) � Sym+(n, R) is simply connected, and where s̃o(n) denotes the bundle defined
through the right SO(n) action on P × so(n); (X, ξ) �→ (Xh−1, Adhξ) with h ∈ SO(n).

Now, we break N into the symmetric and skew-symmetric parts to obtain

N = 1
2 (−L + Q̇), (3.10)

8
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where Q̇ = ẊX� + XẊ� and where L is the angular momentum given in (2.29). Then,
the variables (Q, Q̇) and (Q,L) are regarded as coordinates of T (P/SO(n)) and s̃o(n),
respectively. Under the left SO(n) action, they are subject to the transformation

(Q, Q̇) �→ (gQg−1, gQ̇g−1), (Q,L) �→ (gQg−1, gLg−1), (3.11)

respectively, where g ∈ SO(n).
We now derive Euler–Lagrange equations for a Lagrangian L(Q,N) which is invariant

under the right SO(n) action, on the variational principle,

δ

∫ t1

t0

L(Q,N) dt = 0. (3.12)

To begin with, we have to study infinitesimal variations of Q and N. Through a straightforward
calculation, we can relate δQ and δN to the right invariant infinitesimal variation δXX−1;

δQ = δXX−1Q + Q(δXX−1)�, (3.13)

δN = δXX−1N − (δXX−1N)� +
d

dt
(Q(δXX−1)�). (3.14)

By using these infinitesimal variation, the variations of the Lagrangian with respect to Q and
N are put in the form〈

∂L
∂Q

, δQ

〉
= 2

〈
∂L
∂Q

Q, δXX−1

〉
, (3.15)

〈
∂L
∂N

, δN

〉
=
〈(

∂L
∂N

−
(

∂L
∂N

)�)
N� − d

dt

(
∂L
∂N

)�
Q, δXX−1

〉
+

d

dt

〈
∂L
∂N

,Q(δXX−1)�
〉
,

(3.16)

respectively. On the variational principle together with the boundary condition δX = 0 at
t = t0 and t = t1, the variational integral with the integrand expressed as the sum of (3.15)
and (3.16) provides the Euler–Lagrange equation:

Theorem 3.1. The Euler–Lagrange equation on T (P)/SO(n) is given by

d

dt

(
∂L
∂N

)�
=
(

∂L
∂N

−
(

∂L
∂N

)�)
N�Q−1 + 2

∂L
∂Q

. (3.17)

We now apply this equation to the Lagrangian of the form L = K − U with

K = 1
2 tr(N�Q−1N) = 1

2 tr(Ẋ�Ẋ), U = U(Q). (3.18)

Since
∂K
∂N

= Q−1N,
∂K
∂Q

= −1

2
Q−1NN�Q−1, (3.19)

the Euler–Lagrange equation (3.17) are put in the form

dN

dt
= N�Q−1N − 2Q

∂U
∂Q

, (3.20a)

dQ

dt
= N� + N, (3.20b)

9
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where (3.20b) is a straightforward consequence of the definition of Q. If n = 3, these equations,
except for the pressure term, coincide with those obtained in [4] for the Riemann ellipsoid.
We note also that the reduced equation (3.17) is put in the form different from that expected
from the usual reduction theorem. We will perform the well-known reduction theorem in the
next subsection for the sake of comparison.

3.2. Symplectic reduction

We now apply the symplectic reduction procedure along with the right SO(n) symmetry. Let
(P,X) be coordinates of T ∗(P). Then, the canonical one-form θ is defined to be

θ = tr(P �dX), (3.21)

and the Hamiltonian associated with (3.2) is expressed as

H = 1
2 tr(P �P) + U, (3.22)

which is invariant under the right SO(n) action. The momentum map associated with the
right SO(n) symmetry is the circulation 	 = P �X − X�P ∈ so(n)∗ � so(n). In fact, for an
arbitrary infinitesimal transformation, Xη� with η ∈ so(n), associated with the right SO(n)

action, we have

θ(Xη�) = 〈P �X − X�P, η〉so(n) = 〈	, η〉so(n), (3.23)

where we have used the fact that tr(A�B) = 0 with A and B symmetric and anti-symmetric
matrices, respectively. Since the tangent bundle T (P) and the cotangent bundle T ∗(P) is
identified through the metric (2.9), P ∈ T ∗

X(P) is expressed as P = Y + Xη�, according to
the (right) orthogonal decomposition (2.22), where Y ∈ HR

X and η ∈ so(n). The definition
of 	 and the decomposition of P is put together to give 	 = AR

X(η), so that one obtains

η = (
AR

X

)−1
(	). Thus, P ∈ T ∗

X(P) is put in the form

P = Y + X
((
AR

X

)−1
(	)
)�

, Y ∈ HR
X . (3.24)

The level manifold 	−1(γ ) with γ ∈ so(n) fixed is then expressed as

	−1(γ ) = {(
X, Y + X

((
AR

X

)−1
(γ )
)�) ∣∣X ∈ P, Y ∈ HR

X

}
. (3.25)

The isotropy subgroup Gγ = {h ∈ SO(n)| Adh(γ ) = γ } acts on 	−1(γ ) in the manner(
X, Y + X

((
AR

X

)−1
(γ )
)�) �→ (

Xh−1,
(
Y + X

((
AR

X

)−1
(γ )
)�)

h−1
)
. (3.26)

Since
{
Y + X

((
AR

X

)−1
(γ )
)�} � HR

X � T ∗
πR(X)(P/SO(n)), and since SO(n)/Gγ is

diffeomorphic with the (co)adjoint orbit Oγ through γ , the reduced phase space 	−1(γ )/Gγ

is expressed as

	−1(γ )/Gγ � T ∗(P/SO(n)) ×P/SO(n) Õγ , (3.27)

where Õγ denotes the bundle over P/SO(n) whose fiber is diffeomorphic with Oγ .
We now calculate the reduced symplectic form on 	−1(γ )/Gγ . By using (3.24), we

rewrite the canonical one-form θ as

θ = 1
2 tr
((
AR

X

)−1
(	)(X�dX − dX�X)

)
+ tr(Y�dX)

= 〈(
AR

X

)−1
(	), dX�X − X�dX

〉
so(n)

+ tr(Y�dX)

= 〈
	,ωR

X

〉
so(n)

+ 〈Y, dX〉, (3.28)

10
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where we have used the fact that AR
X is a symmetric operator on so(n). Let ιγ denote the

inclusion map, ιγ : 	−1(γ ) → T ∗(P). Then, one has

ι∗γ θ = 〈
γ, ωR

X

〉
so(n)

+ 〈Y, dX〉. (3.29)

The second term on the right-hand side of the above equation projects to the canonical one-form
on T ∗(P/SO(n)).

The Hamiltonian (3.22) is put in the form

H = 1
2 〈Y, Y 〉 + 1

2

〈
X
((
AR

X

)−1
(	)
)�

, X
((
AR

X

)−1
(	)
)�〉

+ U

= 1
2 〈Y, Y 〉 + 1

2

〈
	,
(
AR

X

)−1
(	)
〉
so(n)

+ U . (3.30)

Then, we have

ι∗γH = 1
2 〈Y, Y 〉 + 1

2

〈
γ,
(
AR

X

)−1
(γ )
〉
so(n)

+ U . (3.31)

The first term on the right-hand side of the above equation projects to the kinetic energy on
T ∗(P/SO(n)).

Theorem 3.2. Let (T ∗(P), dθ,H) be a Hamiltonian system for a pseudo-rigid body, where
θ and H are given in (3.21) and (3.22), respectively, and where U is assumed to be invariant
under the right SO(n) action. Then the system admits right SO(n) symmetry and have the
circulation 	 as the associated momentum map. For γ ∈ so(n)\{0}, the reduced phase space
	−1(γ )/Gγ , where Gγ denotes the isotropy subgroup at γ , is expressed as in (3.27), and
the reduced symplectic form ωγ and the reduced Hamiltonian Hγ are determined through
ι∗γ dθ = π∗

γ ωγ and ι∗γH = π∗
γH, respectively, where ι∗γ θ and ι∗γH are given in (3.29) and

(3.31), respectively, and where πγ is the projection 	−1(γ ) → 	−1(γ )/Gγ .

The above reduction is a realization of the orbit bundle picture of the cotangent bundle
reduction [10] for P .

4. Mechanics for pseudo-rigid bodies

In this section, we derive both the Euler–Lagrange and Hamilton equations on the variational
principle in terms of local coordinates.

4.1. Lagrangian formalism

We take (R,A, S,
, Ȧ,�) as local coordinates on the tangent bundle T (P) (see (2.33) for
the definition of 
 and �). For a given Lagrangian L on T (P), we derive Euler–Lagrange
equations on the variational principle:

δ

∫ t1

t0

L(R,A, S,
, Ȧ,�) dt = 0, (4.1)

where the boundary conditions δR = δS = 0, δA = 0 are imposed at t = t0, t = t1. To carry
out the variational calculation, we need the formulas on infinitesimal variations of 
 and �:

δ
 = [
,R−1δR] +
d

dt
(R−1δR), δ� = [�, S−1δS] +

d

dt
(S−1δS), (4.2)

and further, the formula on the inner product on so(n):

〈ξ, [η, ζ ]〉so(n) = 〈[ξ, η], ζ 〉so(n) , ξ, η, ζ ∈ so(n). (4.3)

On using these formulas, we can derive the Euler–Lagrange equations.

11
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Theorem 4.1. For a Lagrangian L(R,A, S,
, Ȧ,�) on T (P), the Euler–Lagrange
equations are given by

d

dt

∂L
∂Ȧ

= ∂L
∂A

, (4.4a)

d

dt

∂L
∂


= R� ∂L
∂R

−
(

∂L
∂R

)�
R +

[
∂L
∂


,


]
, (4.4b)

d

dt

∂L
∂�

= S� ∂L
∂S

−
(

∂L
∂S

)�
S +

[
∂L
∂�

,�

]
. (4.4c)

We now work with the kinetic energy of the pseudo-rigid body, which is given in (3.2).
After a straightforward calculation, we obtain the kinetic energy in the form

K = 1
2 tr(Ẋ�Ẋ) = 1

2 tr(Ȧ2 − A2(
2 + �2) + 2
A�A). (4.5)

As is seen from the expression, the kinetic energy is independent of R and S. This is a
necessary consequence of the fact that the kinetic energy is invariant under the left and right
SO(n) actions. We now assume that the potential function is also invariant under the same
action, so that it has the form, U = U(A). Then our Lagrangian becomes SO(n) × SO(n)

invariant. We now write out the Euler–Lagrange equations for this Lagrangian. To do so,
we need a notation for matrix operation. For a matrix B := (

bij

) ∈ Rn×n,D(B) denotes the
diagonal matrix which shares the same diagonal entries as B:

D(B) := diag(b11, . . . , bnn). (4.6)

We have to write out every term appearing in the equations of theorem 4.1. A straightforward
calculation provides the differential of K in the form

dK = 〈E, dA〉 + 〈Ȧ, dȦ〉 + 〈R−1LR, d
〉so(n) + 〈S−1	S, d�〉so(n), (4.7)

where

E := D(−(
2 + �2)A + (
A� + �A
)) (4.8)

and where we have used the fact that dA is a diagonal matrix. Equation (4.7) results in

∂K
∂


= R−1LR,
∂K
∂�

= S−1	S, (4.9)

∂K
∂A

= E,
∂K
∂Ȧ

= Ȧ. (4.10)

Hence, theorem 4.1 reduces to the following.

Proposition 4.2. For the Lagrangian having the kinematic energy (4.5) and the potential
U = U(A), the Euler–Lagrange equations are put in the form

d

dt
Ȧ = E − ∂U

∂A
, (4.11a)

d

dt
(R−1LR) = [R−1LR,
], (4.11b)

d

dt
(S−1	S) = [S−1	S,�], (4.11c)

where E is given in (4.8).

12
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This result is already known in [1] in three dimensions and in [19] as the Euler–Poincaré
equations for Riemann ellipsoids. Further, these equations can be viewed as the reduced
Euler–Lagrange equations named in [20]. The reason for this will be stated in section 9. We
also note that equations (4.11b) and (4.11c) are equivalent to the conservation of L and 	,
respectively. It is of use further to rewrite the kinetic energy in terms of L and 	:

K = 1
2 〈Ȧ, Ȧ〉 + 1

2 (〈
,R−1LR〉so(n) + 〈�, S−1	S〉so(n)). (4.12)

4.2. Hamiltonian formalism

We now treat the pseudo-rigid body in the Hamiltonian formalism. We introduce the variables
pA, p
 and p�, as usual, by

pA = ∂L
∂Ȧ

, p
 = ∂L
∂


, p� = ∂L
∂�

, (4.13)

respectively. This means that we have taken (R,A, S, p
, pA, p�) as local coordinates of
T ∗(P). The Hamiltonian is then defined to be

H = 〈p
,
〉so(n) + 〈p�,�〉so(n) + 〈pA, Ȧ〉 − L. (4.14)

If the kinetic energy is chosen as in (4.12), and if the Lagrangian is of the form L = K − U , a
straightforward calculation along with (4.13) provides

p
 = A2
 + 
A2 − 2A�A = R−1LR, (4.15a)

p� = A2� + �A2 − 2A
A = S−1	S, (4.15b)

and the Hamiltonian takes the form

H = 1
2 〈pA, pA〉 + 1

2 〈p
,
〉so(n) + 1
2 〈p�,�〉so(n) + U, (4.16)

where 
 and � in the above equation should be so(n)-valued functions of p
, p�, and A,
which are determined through (4.15a) and (4.15b) (see (6.29)).

The Hamilton equations of motion are derived on the variational principle. As a result,
we obtain

Theorem 4.3. For a Hamiltonian H(R,A, S, p
, pA, p�) on T ∗(P), the Hamilton equations
of motion are given by

d

dt
pA = −∂H

∂A
, (4.17a)

d

dt
p
 = [p
,
] − R� ∂H

∂R
+

(
∂H
∂R

)�
R, (4.17b)

d

dt
p� = [p�,�] − S� ∂H

∂S
+

(
∂H
∂S

)�
S, (4.17c)

Ȧ = ∂H
∂pA

, 
 = ∂H
∂p


, � = ∂H
∂p�

. (4.17d)

Proposition 4.4. For the Hamiltonian (4.16) with U = U(A), the Hamilton equations of
motion reduce to (4.17d) and

d

dt
pA = −∂H

∂A
,

d

dt
p
 = [p
,
],

d

dt
p� = [p�,�]. (4.18)
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As in the Lagrangian formalism, we can show that the second and the third equations
of (4.18) are equivalent to the conservation of the angular momentum L = Rp
R−1 and the
circulation 	 = Sp�S−1, respectively. If we put L = λ and 	 = γ with λ, γ ∈ so(n), one
has p
 = Ad−1

R (λ) and p� = Ad−1
S (γ ), so that the second and third equations of (4.18) may

be interpreted as equations on the (co)adjoint orbits through λ and γ , respectively. We will
discuss the reduction of the pseudo-rigid body system with SO(n) × SO(n) symmetry in
section 7.

5. In three dimensions

We now specialize in the Euler–Lagrange equations for P = GL+(3, R). By using the
isomorphism R : R3 → so(3), we introduce vectors ω and λ, and further a through

R(ω) = 
, R(λ) = �, a = (ai), (5.1)

respectively, where a = (ai) comes from A = diag(a1, a2, a3). We define also m and c
through

R(m) = R−1LR, R(c) = S−1	S, (5.2)

respectively. The vectors m and c are nothing but the angular momentum and the
circulation with respect to the body frame [3], respectively. In contrast with these vectors,
the angular momentum and the circulation with respect to the space frame are given
by Rm and Sc, respectively. Now, calculating R−1LR = 
A2 + A2
 − 2A�A and
S−1	S = �A2 + A2� − 2A
A in an explicit manner results in

m =

⎛⎜⎝
(
a2

2 + a2
3

)
ω1 − 2a2a3λ1(

a2
3 + a2

1

)
ω2 − 2a3a1λ2(

a2
1 + a2

2

)
ω3 − 2a1a2λ3

⎞⎟⎠ , c =

⎛⎜⎝
(
a2

2 + a2
3

)
λ1 − 2a2a3ω1(

a2
3 + a2

1

)
λ2 − 2a3a1ω2(

a2
1 + a2

2

)
λ3 − 2a1a2ω3

⎞⎟⎠ , (5.3)

respectively. The vector corresponding to E = D(−(
2 + �2)A + (
A� + �A
)) is written
out as

E =

⎛⎜⎝a1
(
ω2

2 + ω2
3 + λ2

2 + λ2
3

)− 2a2ω3λ3 − 2a3ω2λ2

a2
(
ω2

3 + ω2
1 + λ2

3 + λ2
1

)− 2a3ω1λ1 − 2a1ω3λ3

a3
(
ω2

1 + ω2
2 + λ2

1 + λ2
2

)− 2a1ω2λ2 − 2a2ω1λ1

⎞⎟⎠ . (5.4)

Then, the Euler–Lagrange equations (4.11a), (4.11b) and (4.11c) are brought into

ä = E − ∇U(a), (5.5a)

ṁ = m × ω, (5.5b)

ċ = c × λ, (5.5c)

respectively. These are well-known equations in the liquid drop model of nuclei [3].
In a similar manner, we find that the kinetic energy (4.12) is expressed as

K = 1

2

∑
i

ȧ2
i +

1

2

∑
i,j,k

((
a2

i + a2
j

)(
ω2

k + λ2
k

)− 4aiajωkλk

)
, (5.6)

where the summation over i, j, k is taken cyclically. It turns out also that

∂K
∂ω

= m,
∂K
∂λ

= c,
∂K
∂a

= E. (5.7)
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6. Geometric set-up with the SO(n) × SO(n) action

6.1. Two-sided action of SO(n) × SO(n)

To study the SO(n) × SO(n) symmetry of the pseudo-rigid body, we start with the two-sided
action of G = SO(n) × SO(n) on P , which are defined by

X �−→ gXh−1, (g, h) ∈ SO(n) × SO(n). (6.1)

Let X = RAS−1 be a singular value decomposition of X, where R, S ∈ SO(n) and A

is a diagonal matrix whose diagonal entries are singular values of X. Then, the isotropy
subgroups GA at A and GX at X prove to be isomorphic to each other. We deal with GA. Let
A = diag(a1, a2, . . . , an) with a1 � a2 � · · · � an > 0. GA’s are determined, depending
on various types of the singular values, and hence there are as many orbit types as the types
of singular values. According to orbit types, P is stratified into strata, among which, the
principal stratum, denoted by Ṗ , is the subset consisting of X whose singular values are all
distinct. In what follows, we treat Ṗ in particular for the reason that the isotropy subgroup
GX at X ∈ Ṗ is a finite group, as is shown below, and this fact makes it feasible to perform
the reduction procedure by SO(n) × SO(n) with slight modification, as will be seen in
section 7. In section 9, we will give the isotropy subgroups depending on the singular value
types in the case of n = 3 (see (9.2)). Let X = RAS−1 ∈ Ṗ , where A = diag(a1, . . . , an) with
a1 > · · · > an > 0. Then, the condition gAh−1 = A for (g, h) ∈ SO(n) × SO(n) is solved
by

GA = {(D,D)| D = diag(ε1, ε2, . . . , εn), εj = ±1, det D = 1}, (6.2)

which is isomorphic with (Z2)
n−1, where Z2 = {±1}. The orbit OA through A by the

G action is then diffeomorphic with (SO(n) × SO(n))/(Z2)
n−1, where (Z2)

n−1 acts on
G = SO(n) × SO(n) by (g, h) �→ (gD, hD). Though the SO(n) × SO(n) action on Ṗ is
not free, the factor space is a manifold, as is shown below.

Proposition 6.1. Let G = SO(n)×SO(n), and Ṗ denote the principal stratum or the subset
consisting of X ∈ P whose singular values are all distinct. Then one has

G\Ṗ � C := {x = (xj ) ∈ Rn| x1 > · · · > xn > 0}. (6.3)

The projection Ṗ → G\Ṗ is denoted by π .

Proof. Let μj(X) denote the singular values of X ∈ Ṗ with μ1(X) > · · · > μn(X)

and μ(X) = (μj (X)) the vector consisting of the singular values. Then, μ defines a
map π : Ṗ → C. Since for any x = (xj ) ∈ C, a matrix A = diag(x1, · · · , xn) maps
to μ(A) = x, the μ is surjective. We now assume that μ(X1) = μ(X2) = (aj ) ∈ C.
Then, there exist (Ri, Si) ∈ G, i = 1, 2, such that X1 = R1AS−1

1 and X2 = R2AS−1
2 with

A = diag(a1, . . . , an). This implies that X2 = R2R
−1
1 X1

(
S2S

−1
1

)−1
, so that X1 and X2 are

sitting in the same orbit of G. It then follows that G\Ṗ � C, and then π may be identified
with μ. �

We return to P for the time being. According to the G-action on P , the tangent space
TX(P) at X ∈ P is decomposed into

TX(P) = VX ⊕ HX, (6.4)

where VX and HX are the vertical and horizontal subspaces which are defined, respectively,
by VX = TA(OX), the tangent space to the orbit OX through X and by HX = V ⊥

X , where
the orthogonal complement is taken with respect to the canonical metric (2.9) on P . These
subspaces prove to be expressed as
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VX = {ξX + Xη�|(ξ, η) ∈ so(n) × so(n)}, (6.5)

HX = {Y ∈ TX(P)|YX� = XY�, X�Y = Y�X}, (6.6)

respectively. We remark that the dimensions of VX and HX depend on X in general.
On account of the singular decomposition X = RAS−1, the vertical and horizontal

subspaces VX and HX are isomorphic with VA and HA, respectively. If we restrict ourselves to
Ṗ , for X = RAS−1 ∈ Ṗ , the HA is easily found to be expressed as

HA = {diag(u1, . . . , un)| uj ∈ R}, (6.7)

so that dim HX = dim HA = n. The dimension of VX with X ∈ Ṗ is then dim VX = n2 −n =
2 dim so(n), which implies also that ξX + Xη� = 0 if and only if ξ = η = 0, though this fact
can be verified in a straightforward manner.

From (6.7), we see that the local coordinates (R,A, S,
, Ȧ,�) of T (Ṗ), which we
have used in section 4, are in keeping with the SO(n) × SO(n) action; Ȧ is attributed to the
horizontal vector at A and (
,�) to the vertical vectors (
A,A��) at A.

6.2. Bi-connection

In accordance with the decomposition (6.4) with X ∈ Ṗ , we may define a connection form
on Ṗ . We start with the definition of the ‘bi-inertia tensor’. In what follows, we describe
elements ξ ⊕ η ∈ so(n) ⊕ so(n) in the form of column vector, like

(ξ
η

)
, and the inner product

on so(n) ⊕ so(n) is defined through〈(
ξ ′

η′

)
,

(
ξ

η

)〉
so(n)⊕so(n)

= 〈ξ ′, ξ 〉so(n) + 〈η′, η〉so(n). (6.8)

Proposition 6.2. The bi-inertia tensor is defined to be a map BX : so(n) ⊕ so(n) →
so(n) ⊕ so(n) given by

BX :=
(

AL
X −2 AdX

−2 Ad�
X AR

X

)
:

(
ξ

η

)
�→
(

AL
X(ξ) − 2 AdX(η)

−2 Ad�
X(ξ) + AR

X(η)

)
, (6.9)

where
(ξ
η

) ∈ so(n) ⊕ so(n), and where AdX and Ad�
X are defined on so(n) through

AdX(ξ) = XξXT , Ad�
X(ξ) = X�ξX, (6.10)

respectively. Then, the BX is a positive symmetric operator for X ∈ Ṗ . Thus, B−1
X exists for

X ∈ Ṗ . Furthermore, BX transforms according to

BgXh−1 = Ad(g,h) ◦ BX ◦ Ad−1
(g,h), (g, h) ∈ SO(n) × SO(n), (6.11)

where Ad(g,h) := Adg ⊕ Adh.

Proof. From the definitions of AL
X,AR

X, AdX and Ad�
X, we can easily verify that〈(

ξ ′

η′

)
,

(
AL

X −2 AdX

−2 Ad�
X AR

X

)(
ξ

η

)〉
so(n)⊕so(n)

=
〈(

AL
X −2 AdX

−2 Ad�
X AR

X

)(
ξ ′

η′

)
,

(
ξ

η

)〉
so(n)⊕so(n)

, (6.12)
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so that BX is symmetric. To verify the positive definiteness of BX for X ∈ Ṗ , we put X in the
singular decomposition form, X = RAS−1, and set

Ad−1
R (ξ) = ξ ′ = (ξ ′

ij ), Ad−1
S (η) = η′ = (η′

ij ). (6.13)

Then, a straightforward calculation provides〈(
ξ

η

)
,

(
AL

X −2 AdX

−2 Ad�
X AR

X

)(
ξ

η

)〉
so(n)⊕so(n)

=
∑
i<j

(ai − aj )
2(ξ ′

ij )
2 + 2

∑
i<j

aiaj (ξ
′
ij − η′

ij )
2 +
∑
i<j

(ai − aj )
2(η′

ij )
2 � 0. (6.14)

This implies that when ai �= aj with i �= j , the above quadratic form vanishes if and only if
ξ ′ = η′ = 0, or if and only if ξ = η = 0. Thus, we have verified that BX is positive definite,
if X ∈ Ṗ .

The verification of (6.11) is straightforward:(
AL

gXh−1 −2 AdgXh−1

−2 Ad�
gXh−1 AR

gXh−1

)
=
(

AdgAL
X Ad−1

g −2 Adg AdX Ad−1
h

−2 Adg Ad�
X Ad−1

h AdhAR
XAd−1

h

)

=
(

Adg 0

0 Adh

)(
AL

X −2 AdX

−2 Ad�
X AR

X

)(
Ad−1

g 0

0 Ad−1
h

)
, (6.15)

where we have used the transformation property of AL
X and AR

X (see (2.12) and (2.13)) and
that for AdX and Ad�

X:

AdgXh−1 = Adg AdXAd−1
h , Ad�

gXh−1 = AdhAd�
XAd−1

g . (6.16)

This ends the proof. �

We are now in a position to define a connection form on Ṗ , which we will refer to as
a bi-connection with respect to the SO(n) × SO(n) action. We denote by (ξ ⊕ η)P(X) the
vector field on P induced by ξ ⊕ η ∈ so(n) ⊕ so(n) (see (6.5)):

(ξ ⊕ η)P(X) = ξX + Xη�. (6.17)

Proposition 6.3. Let ωB be an so(n) ⊕ so(n)-valued one-form defined to be

ωB
X =

(
AL

X −2 AdX

−2 Ad�
X AR

X

)−1 (
dXX� − X dX�

dX�X − X�dX

)
. (6.18)

Then, ωB satisfies the following:

ωX((ξ ⊕ η)P(X)) = ξ ⊕ η, ξ ⊕ η ∈ so(n) ⊕ so(n), (6.19)

ωB
gXh−1 = Ad(g,h) ◦ ωB

X, (g, h) ∈ SO(n) × SO(n), (6.20)

and is called the bi-connection form.

Proof. For a vertical vector ξX + Xη� at X, one has

ωB
X(ξX + Xη�) =

(
AL

X −2 AdX

−2 Ad�
X AR

X

)−1 (
ξXX� + XX�ξ − 2XηX�

−2X�ξX + ηX�X + X�Xη

)

=
(

AL
X −2 AdX

−2 Ad�
X AR

X

)−1 ( AL
X −2 AdX

−2 Ad�
X AR

X

)(
ξ

η

)
=
(

ξ

η

)
. (6.21)
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The transformation property of ωB
X results from that for BX:

ωB
gXh−1 = B−1

gXh−1

(
d(gXh−1)(gXh−1)� − gXh−1d(gXh−1)�

d(gXh−1)�gXh−1 − (gXh−1)�d(gXh−1)

)

= Ad(g,h)B−1
X Ad−1

(g,h)

(
Adg 0

0 Adh

)(
dXX� − X dX�

dX�X − X�dX

)
= Ad(g,h)ω

B
X. (6.22)

This ends the proof. �

It is now easy to see that

ker ωB
X = {Y ∈ TX(Ṗ)| YX� − XY� = Y�X − X�Y = 0} = HX, (6.23)

where HX has been given in (6.6).

6.3. A remark on the bi-connection

With (6.17) in mind, we now show that the bi-inertia tensor is equal to the locked inertia tensor
I(X) [7] with respect to the two-sided SO(n) × SO(n) action, which is determined through

〈I(X)(ξ ⊕ η), ξ ′ ⊕ η′〉so(n)⊕so(n) = 〈〈(ξ ⊕ η)P(X), (ξ ′ ⊕ η′)P(X)〉〉. (6.24)

A straightforward calculation of the right-hand side of the above definition provides

〈〈(ξ ⊕ η)P(X), (ξ ′ ⊕ η′)P(X)〉〉
= tr((ξX + Xη)�(ξ ′X + Xη′))
= 〈

AL
X(ξ) − 2 AdX(ξ), ξ ′〉

so(n)
+
〈−2 Ad�

X(η) + AR
X(η), η′〉

so(n)

= 〈BX(ξ ⊕ η), ξ ′ ⊕ η′〉so(n)⊕so(n). (6.25)

This proves our assertion. Hence, the bi-connection is identified with the mechanical
connection [7] as well. We note that the bi-inertia tensor is defined independently of the
Riemannian metric on P .

6.4. Local expressions

We now express the bi-connection form in terms of local coordinates. A straightforward
calculation with X = RAS−1 provides

ωB
RAS−1 = Ad(R,S)ω

B
A, ωB

A := R−1dR ⊕ S−1dS. (6.26)

This implies that the bi-connection is flat.
We turn to the Lagrangian and the Hamiltonian. From (2.32), we have(

R−1LR

S−1	S

)
=
(

AL
A −2 AdA

−2 AdA AR
A

)(



�

)
, (6.27)

so that R−1LR⊕S−1	S = BA(
⊕�). The kinetic energy (4.12) in the Lagrangian formalism
is then expressed, in terms of the bi-inertia tensor, as

K = 1
2 〈Ȧ, Ȧ〉 + 1

2 〈
 ⊕ �,BA(
 ⊕ �)〉so(n)⊕so(n). (6.28)

We proceed to the Hamiltonian. We have introduced the conjugate variables pA, p
 and p�

in (4.13) and found the relations (4.15a) and (4.15b) of them to 
 and �, which are put in the
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form, like (6.27):(
p


p�

)
=
(

AL
A −2 AdA

−2 AdA AR
A

)(



�

)
=
(

Ad−1
R 0

0 Ad−1
S

)(
L

	

)
. (6.29)

Then, the Hamiltonian (4.16) is put in the form

H = 1
2 〈pA, pA〉 + 1

2 〈p
 ⊕ p�,B−1
A (p
 ⊕ p�)〉so(n)⊕so(n) + U(A). (6.30)

7. Reduction by the SO(n) × SO(n) symmetry

7.1. SO(n) × SO(n) symmetry

The Hamiltonian system we consider is the same as in section 3, but it is assumed to be
invariant under the action of G = SO(n) × SO(n) in this section. The conserved quantity
associated with this symmetry is given by

θ(ξX + Xη�) = 〈PX� − XP �, ξ 〉so(n) + 〈P �X − X�P, η〉so(n). (7.1)

From this, it turns out that the associated momentum map J : T ∗(P) → so(n) ⊕ so(n) is
expressed as

J (X, P ) = (PX� − XP �) ⊕ (P �X − X�P). (7.2)

Like (2.29), we denote the components of J by

L = PX� − XP �, 	 = P �X − X�P, (7.3)

which are also called the angular momentum and the circulation, respectively. As is easily
seen from (2.31a) and (2.31b), J is adjoint-equivariant:

J (gXh−1, gPh−1) = Ad(g,h)J (X, P ), (g, h) ∈ SO(n) × SO(n). (7.4)

7.2. Symplectic reduction

We study the level manifold J−1(λ ⊕ γ ) for a given λ ⊕ γ ∈ so(n) ⊕ so(n). Our problem is
to solve the equation J (X, P ) = λ ⊕ γ . Since T ∗(P) � T (P), we may put P ∈ T ∗

X(P) in the
form P = ξX + Y + Xη�, where ξ ⊕ η ∈ so(n) ⊕ so(n) and Y ∈ HX. Plugging this into the
equation J (X, P ) = λ ⊕ γ , we obtain

AL
X(ξ) − 2 AdX(η) = λ, (7.5a)

−2 Ad�
X(ξ) + AR

X(η) = γ, (7.5b)

where AdX and Ad�
X are given in (6.10). The above equations are put together to be expressed

as BX(ξ ⊕ η) = λ ⊕ γ on account of (6.9). Since BX is invertible if X ∈ Ṗ , we obtain
ξ ⊕ η = B−1

X (λ ⊕ γ ) for X ∈ Ṗ . To get an explicit expression of ξ ⊕ η, we now put X in the
singular decomposition form, X = RAS−1, and rewrite the above equations as

AL
A(ξ ′) − 2 AdA(η′) = λ′, (7.6a)

AR
A(η′) − 2 AdA(ξ ′) = γ ′, (7.6b)

where

ξ ′ = Ad−1
R (ξ), η′ = Ad−1

S (η), λ′ = Ad−1
R (λ), γ ′ = Ad−1

S (γ ). (7.7)
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Now, these equations are easily solved for ξ ′ and η′. Let

ξ ′ = (ξ ′
ij ), η′ = (η′

ij ), λ′ = (λ′
ij ), γ ′ = (γ ′

ij ), A = diag(a1, . . . , an). (7.8)

Then, a straightforward calculation provides the solutions,

ξ ′
ij = λ′

ij

(
a2

i + a2
j

)
+ 2aiajγ

′
ij(

a2
i − a2

j

)2 , (7.9a)

η′
ij = γ ′

ij

(
a2

i + a2
j

)
+ 2aiajλ

′
ij(

a2
i − a2

j

)2 . (7.9b)

Here, we note that ai �= aj with i �= j for X ∈ Ṗ . Using these ξ ′ and η′, one obtains
ξ ⊕ η = (AdR ⊕ AdS)(ξ

′ ⊕ η′). The level manifold is now expressed as

J−1(λ ⊕ γ )|T ∗(Ṗ) = {(
X,
(
B−1

X (λ ⊕ γ )
)
P(X) + Y

)∣∣X ∈ Ṗ, Y ∈ HX

}
, (7.10)

where the notation (6.17) has been used for ξ ⊕ η = B−1
X (λ ⊕ γ ). On account of the

adjoint-equivariance (7.4), the level manifold J−1(λ ⊕ γ ) admits the action of the isotropy
subgroup

Gλ⊕γ = {(g, h) ∈ SO(n) × SO(n)| Ad(g,h)(λ ⊕ γ ) = λ ⊕ γ }. (7.11)

Further, another isotropy subgroup GX
∼= GA

∼= (Z2)
n−1 acts on J−1(λ ⊕ γ ) as well (see

(6.2) for the definition of GA).
According to the singular value decomposition X = RAS−1, we now express the elements

of J−1(λ ⊕ γ )|T ∗(Ṗ) as

(RAS−1, R(ξ ′A + Y ′ + Aη′�)S−1), (7.12)

where Y ′ ∈ HA which is determined by Y = RY ′S−1, and where ξ ′ and η′ are given in (7.9).
Then, under the action of (g, h) ∈ Gλ⊕γ , the element (7.12) transforms to

(gRA(hS)−1, gR(ξ ′A + Y ′ + Aη′�)(hS)−1). (7.13)

Moreover, the isotropy subgroup GA acts on J−1(λ ⊕ γ )|T ∗(Ṗ) through DAD = A with
D ∈ GA. From these facts, we observe that {ξ ′A + Y ′ + Aη′�| Y ′ ∈ HA} � HA �
Tπ(A)(G\Ṗ) � T ∗

π(A)(G\Ṗ), and that the Gλ⊕γ × (Z2)
n−1 action defines an equivalence

relation on SO(n)×SO(n) through (R, S) ∼ (gRD, hSD). LetOλ⊕γ denote the adjoint orbit
through λ⊕γ in so(n)⊕so(n). Then, the factor space of SO(n)×SO(n) by Gλ⊕γ × (Z2)

n−1

is expressed as Oλ⊕γ /(Z2)
n−1. Hence, the factor space of J−1(λ⊕γ )|T ∗(Ṗ) by Gλ⊕γ ×(Z2)

n−1

is put in the form

(Gλ⊕γ × (Z2)
n−1)\J−1(λ ⊕ γ )|T ∗(Ṗ) � T ∗(G\Ṗ) ×G\Ṗ (Õλ⊕γ /(Z2)

n−1), (7.14)

where Õλ⊕γ /(Z2)
n−1 denotes a fiber bundle over G\Ṗ whose fiber is Oλ⊕γ /(Z2)

n−1.
The T ∗(G\Ṗ) ×G\Ṗ (Õλ⊕γ /(Z2)

n−1) should be a symplectic leaf of G\T ∗(Ṗ) from the
orbit reduction theorem [10]. Though the orbit reduction theorem and the cotangent bundle
reduction theorem are proved on the assumption that the configuration space P ′ be a principal
fiber bundle with structure group G′ acting freely on it, those theorems will hold true on
the assumption that G′ has the same orbit type on P ′ and that the isotropy subgroup is a
discrete finite group. This is because G′\P ′ is a manifold, and because differential calculus
for symplectic forms in those theorems will not be affected under the relaxed assumption
stated above.
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In what follows, we work with the reduced system. Let P = ξX + Y + Xη� with X ∈ Ṗ .
Then, like (7.5), one has(

ξ

η

)
=
(

AL
X −2 AdX

−2 Ad�
X AR

X

)−1 (
L

	

)
. (7.15)

With this in mind, we calculate the canonical one-form θ :

θ = 〈ξX + Y + Xη�, dX〉

= 〈Y, dX〉 +

〈(
ξ

η

)
,

(
dXX� − X dX�

dX�X − X�dX

)〉
so(n)⊕so(n)

= 〈Y, dX〉 +

〈(
AL

X −2 AdX

−2 Ad�
X AR

X

)−1 (
L

	

)
,

(
dXX� − X dX�

dX�X − X�dX

)〉
so(n)⊕so(n)

= 〈Y, dX〉 +
〈
L ⊕ 	,ωB

X

〉
so(n)⊕so(n)

, (7.16)

where we have used the fact that B−1
X is a symmetric operator, and the definition of ωB . Let

ιλ⊕γ : J−1(λ ⊕ γ )|T ∗(Ṗ) → T ∗(Ṗ) be the inclusion map. Then, we obtain, from (7.16),

ι∗λ⊕γ θ = 〈Y, dX〉 + 〈λ ⊕ γ, ωB
X〉so(n)⊕so(n). (7.17)

In a similar manner, the kinetic energy is brought into the form

K = 1

2
〈ξX + Y + Xη�, ξX + Y + Xη�〉

= 1

2
〈Y, Y 〉 +

1

2

〈(
ξ

η

)
,

(
AL

X −2 AdX

−2 Ad�
X AR

X

)(
ξ

η

)〉
so(n)⊕so(n)

= 1

2
〈Y, Y 〉 +

1

2

〈(
AL

X −2 AdX

−2 Ad�
X AR

X

)−1 (
L

	

)
,

(
L

	

)〉
so(n)⊕so(n)

.(7.18)

It then follows that

ι∗λ⊕γH = 1
2 〈Y, Y 〉 + 1

2 〈B−1
X (λ ⊕ γ ), λ ⊕ γ 〉so(n)⊕so(n) + U . (7.19)

Theorem 7.1. Let (T ∗(P), dθ,H) be the Hamiltonian system for a pseudo-rigid body, where
θ andH are of the same form as given in (3.21) and (3.22), respectively, and whereU is assumed
to be invariant under the SO(n)×SO(n) action. The system admits SO(n)×SO(n) symmetry
and have the associated moment map J = L ⊕ 	, where L and 	 are the angular momentum
and the circulation, respectively, and given in (7.3). For λ ⊕ γ ∈ so(n) ⊕ so(n)\{0 ⊕ 0}, the
reduced phase space (Gλ⊕γ × (Z)n−1)\J−1(λ ⊕ γ )|T ∗(Ṗ) is expressed as in (7.14), and the
reduced symplectic form ωλ⊕γ and the reduced Hamiltonian Hλ⊕γ are determined through
ι∗λ⊕γ dθ = π∗

λ⊕γ ωλ⊕γ and ι∗λ⊕γH = π∗
λ⊕γH, where ι∗λ⊕γ θ and ι∗λ⊕γH are given in (7.17) and

(7.19), respectively, and where πλ⊕γ is the projection of J−1(λ ⊕ γ )|T ∗(Ṗ) onto the reduced
phase space.

7.3. The local expression of the reduced system

We wish to describe the reduced system in terms of local coordinates. We start by expressing
the canonical one-form θ in terms of local coordinates. Equation (7.16) along with X = RAS−1

is rewritten as

θ = 〈pA, dA〉 +

〈(
p


p�

)
,

(
R−1dR

S−1dS

)〉
so(n)⊕so(n)

, (7.20)
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where (6.26) and (6.29) have been used, and where

pA = R−1YS. (7.21)

We here note that if A ∈ Ṗ , we may put R−1YS = Ȧ = diag(ȧ1, . . . , ȧn) ∈ HA on account
of (6.7), so that pA = Ȧ = ∂K/∂Ȧ, where K is given in (6.28). The exterior derivative of θ

is then shown to be expressed as

dθ = 〈dpA ∧ dA〉 +

〈(
dp


dp�

)
∧
(

R−1dR

S−1dS

)〉
so(n)⊕so(n)

−
〈(

p


p�

)
,

(
R−1dR ∧ R−1dR

S−1dS ∧ S−1dS

)〉
so(n)⊕so(n)

. (7.22)

where 〈·∧·〉 denotes an inner product combined with the wedge product, 〈a∧b〉 = ∑
aij ∧bij

with a = (aij ), b = (bij ).
For a generic Hamiltonian H, the Hamiltonian vector field XH is determined through

ι(XH) dθ = −dH, where ι denote the interior product. The Hamilton equations of motion
determined through XH then turn out to be the same as (4.17). For a pseudo-rigid body, the
Hamiltonian is given by (6.30).

We proceed to the reduced Hamilton equations for the pseudo-rigid body. If restricted on
T ∗(G\Ṗ) ×G\Ṗ (Õλ⊕γ /(Z2)

n−1), p
 and p� are reduced, from (6.29), to

(p
 ⊕ p�)red = Ad−1
(R,S)(λ ⊕ γ ), (7.23)

which means that if restricted, p
 ⊕ p� is sitting on the (co)adjoint orbit of SO(n) × SO(n)

through λ⊕γ ∈ so(n)⊕so(n). From (6.30) and (7.23), the reduced Hamiltonian is expressed
as

Hλ⊕γ = 1
2 〈pA, pA〉 + 1

2

〈
Ad−1

(R,S)(λ ⊕ γ ),B−1
A

(
Ad−1

(R,S)(λ ⊕ γ )
)〉

so(n)⊕so(n)
+ U(A). (7.24)

Among the Hamilton equations of motion (4.18), the second and the last of them are put
together to take the form

d

dt

(
p


p�

)
=
⎡⎣(p


p�

)
,

(
AL

A −2 AdA

−2 AdA AR
A

)−1 (
p


p�

)⎤⎦ , (7.25)

where (6.29) has been used and where the commutator on so(n) ⊕ so(n) is defined as[(
ξ ′

η′

)
,

(
ξ

η

)]
=
(

[ξ ′, ξ ]

[η′, η]

)
. (7.26)

If p
 ⊕ p� is replaced by (p
 ⊕ p�)red together with (7.23), equation (7.25) is viewed as the
reduced equation on the orbit bundle Õλ⊕γ /(Z2)

n−1,

d

dt
Ad−1

(R,S)(λ ⊕ γ ) = [
Ad−1

(R,S)(λ ⊕ γ ),B−1
A

(
Ad−1

(R,S)(λ ⊕ γ )
)]

. (7.27)

The remaining Hamilton equations reduce to

dA

dt
= pA,

d

dt
pA = −∂Hλ⊕γ

∂A
. (7.28)

Equations (7.27) and (7.28) form the reduced Hamilton equations on the reduced phase space.
See [22] for the case of n = 3.
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8. Relative equilibria

We now consider critical points of the reduced Hamilton equations (7.27) and (7.28). Let(
A,pA, Ad−1

(R,S)(λ ⊕ γ )
) = (A0, 0, κ ⊕ μ) be a critical point of them in the reduced phase

space. In other words, ∂Hλ⊕γ /∂A vanishes at (A0, 0, κ ⊕μ) and κ ⊕μ satisfies the condition[
κ ⊕ μ,B−1

A0
(κ ⊕ μ)

] = 0. A sufficient condition for the latter is that κ ⊕ μ is an eigenvector
of the symmetric operator B−1

A0
. Equation (6.27) with 
 = R−1Ṙ,� = S−1Ṡ, L = λ, and

	 = γ gives rise to the equations for R and S:(
R−1Ṙ

S−1Ṡ

)
=
(

AL
A0

−2 AdA0

−2 AdA0 AR
A0

)−1 (
κ

μ

)
. (8.1)

The right-hand side of the above equation is expressed as B−1
A0

(κ ⊕ μ). On account of (7.9),
there exist κ ′ and μ′ such that κ ′⊕μ′ := B−1

A0
(κ⊕μ). Then, equation (8.1) are easily integrated

to give a solution of the form

R(t) = R0 exp(tκ ′), S(t) = S0 exp(tμ′). (8.2)

Hence, the pseudo-rigid body (or a Riemann ellipsoid) is in relative equilibrium:

X(t) = exp(tAdR0κ
′)X0 exp(−tAdS0μ

′), (8.3)

where X0 = R0A0S
−1
0 . We here note that the condition

[
κ ⊕ μ,B−1

A0
(κ ⊕ μ)

] = 0 is now
rewritten as [BA0(κ

′ ⊕ μ′), κ ′ ⊕ μ′] = 0.
Conversely, we assume that (X(t), P (t)) with X(t) given above and P(t) = Ẋ(t) is a

solution to the Hamilton equations (4.18), where R(t) = R0 exp(tκ ′), S(t) = S0 exp(tμ′) and
A(t) = A0. Then, from (2.32) and (6.9) along with 
 = κ ′ and � = μ′, the conserved
momentum J = L ⊕ 	 proves to take the value

λ ⊕ γ := Ad(R0,S0)BA0(κ
′ ⊕ μ′). (8.4)

On the other hand, from (8.3) and P(t) = exp(tAdR0κ
′)P0 exp(−tAdS0μ

′) with P0 =
AdR0(κ

′)X0 − X0AdS0(μ
′), the adjoint-equivariance (7.4) of J implies that Adexp(tAdR0 κ ′) ⊕

Adexp(tAdS0 μ′) leaves λ⊕ γ invariant, so that Ad(exp(tAdR0 κ ′),exp(tAdS0 μ′)) ∈ Gλ⊕γ . It then follows
that AdR0κ

′ ⊕ AdS0μ
′ ∈ Gλ⊕γ, [Ad(R0,S0)(κ

′ ⊕ μ′), λ ⊕ γ ] = 0. From this fact along with
(8.4), one obtains

Ad(R0,S0)[κ
′ ⊕ μ′,BA0(κ

′ ⊕ μ′)] = [Ad(R0,S0)(κ
′ ⊕ μ′), Ad(R0,S0)BA0(κ

′ ⊕ μ′)] = 0, (8.5)

and hence

[κ ′ ⊕ μ′,BA0(κ
′ ⊕ μ′)] = 0. (8.6)

From (8.4), equation (8.6) is brought into[
Ad−1

(R0,S0)
(λ ⊕ γ ),B−1

A0
Ad−1

(R0,S0)
(λ ⊕ γ )

] = 0. (8.7)

We now turn to the reduced Hamilton equations. The above equation implies that the right-hand
side of (7.27) vanishes at Ad−1

(R0,S0)
(λ ⊕ γ ). Further, from A(t) = A0, one has pA = 0. Since

the solution of the Hamilton equations projects to that of the reduced Hamilton equations,
∂Hλ⊕γ /∂A, the right-hand side of (7.28), must vanish at

(
A0, 0, Ad−1

(R0,S0)
(λ ⊕ γ )

)
. Thus,(

A0, 0, Ad−1
(R0,S0)

(λ ⊕ γ )
)

gives a critical point of the reduced Hamilton equations. Thus, we
have shown the following.

Proposition 8.1. The curve X(t) given in (8.3) with A(t) = A0 is in relative equilibrium,
if and only if equation (8.6) holds and ∂Hλ⊕γ /∂A vanishes at

(
A0, 0, Ad−1

(R0,S0)
(λ ⊕ γ )

)
in

the reduced phase space. Condition (8.6) is also equivalent to AdR0κ
′ ⊕ AdS0μ

′ ∈ Gλ⊕γ ,
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where Gλ⊕γ denotes the Lie algebra of the isotropy subgroup Gλ⊕μ given in (7.11). Relative
equilibrium solutions (X(t), P (t)) to the Hamilton equations and critical points of the reduced
Hamilton equations are in one-to-one correspondence.

We now show that the point
(
A0, Ad−1

(R0,S0)
(λ ⊕ γ )

)
coming from the critical point

mentioned in proposition 8.1 is characterized as a critical point of the amended potential
defined on the orbit bundle Õλ⊕γ /(Z2)

n−1 to be

Vλ⊕γ

(
A, Ad−1

(R,S)(λ ⊕ γ )
)

:= U(A) + 1
2

〈
Ad−1

(R,S)(λ ⊕ γ ),B−1
A

(
Ad−1

(R,S)(λ ⊕ γ )
)〉

so(n)⊕so(n)
.

(8.8)

From proposition 8.1, we see that ∂Vλ⊕γ /∂A = 0 at (A0, Ad−1
(R0,S0)

(λ ⊕ γ )), since Vλ⊕γ =
Hλ⊕γ − 1

2 〈pA, pA〉 and pA = 0. We consider the derivative of Vλ⊕γ with respect to the variable
Ad−1

(R,S)(λ ⊕ γ ) at (R, S) = (R0, S0). Let ζ1 ⊕ ζ2 be an arbitrary element of so(n) ⊕ so(n).

Then, any tangent vector at Ad−1
(R0,S0)

(λ ⊕ γ ) takes the form d
dt

Ad−1
(etζ1 R0,etζ2 S0)

(λ ⊕ γ ))|t=0.
Hence, the derivative of Vλ⊕γ in the direction of this tangent vector is expressed and calculated
as
1

2

d

dt

∣∣∣∣
t=0

〈
Ad−1

(etζ1 R0,etζ2 S0)
(λ ⊕ γ ),B−1

A0
Ad−1

(etζ1 R0,etζ2 S0)
(λ ⊕ γ )

〉
so(n)⊕so(n)

= 1

2

d

dt

∣∣∣∣
t=0

〈
Ad−1

(R0,S0)
Ad−1

(etζ1 ,etζ2 )
(λ ⊕ γ ),B−1

A0
Ad−1

(R0,S0)
Ad−1

(etζ1 ,etζ2 )
(λ ⊕ γ )

〉
so(n)⊕so(n)

= −〈Ad−1
(R0,S0)

[ζ1 ⊕ ζ2, λ ⊕ γ ],B−1
A0

Ad−1
(R0,S0)

(λ ⊕ γ )
〉
so(n)⊕so(n)

= −〈[Ad−1
(R0,S0)

(ζ1 ⊕ ζ2), Ad−1
(R0,S0)

(λ ⊕ γ )
]
,B−1

A0
Ad−1

(R0,S0)
(λ ⊕ γ )

〉
so(n)⊕so(n)

= −〈Ad−1
(R0,S0)

(ζ1 ⊕ ζ2),
[
Ad−1

(R0,S0)
(λ ⊕ γ ),B−1

A0
Ad−1

(R0,S0)
(λ ⊕ γ )

]〉
so(n)⊕so(n)

= 0, (8.9)

where we have used (8.7) and the formula

〈[ξ1 ⊕ ξ2, η1 ⊕ η2], ζ1 ⊕ ζ2〉so(n)⊕so(n) = 〈ξ1 ⊕ ξ2, [η1 ⊕ η2, ζ1 ⊕ ζ2]〉so(n)⊕so(n). (8.10)

Since ζ1 ⊕ ζ2 is arbitrary, the above equation implies that the derivative of Vλ⊕γ with respect
to the orbit bundle variables Ad−1

(R,S)(λ ⊕ γ ) vanishes at (R0, S0).

Proposition 8.2. Critical points of the reduced Hamilton equations are determined by critical
points of the amended potential (8.8) defined on the orbit bundle Õλ⊕γ /(Z2)

n−1.

We note in addition that the amended potential on Ṗ is defined to be

Ṽλ⊕γ (X) := U(X) + 1
2 〈λ ⊕ γ,B−1

X (λ ⊕ γ )〉so(n)⊕so(n), (8.11)

which is an extension of (8.8). From the assumption that U(X) is G-invariant and from
the transformation property of BX, we see that Ṽλ⊕γ (X) takes the same values as those
Vλ⊕γ

(
A, Ad−1

(R,S)(λ ⊕ γ )
)

does. Hence, the relative equilibrium is also characterized by
critical points of the amended potential (8.11).

For comparison’s sake, we mention relative equilibria in the Lagrangian formalism.
According to the relative equilibrium theory [21], (X0, Ẋ0) with Ẋ0 = ξX0 + X0η

� is a
relative equilibrium or the curve X(t) = etξX0e−tη is a solution to the Euler–Lagrange
equation, if and only if X0 is a critical point of the augmented potential. In the present case,
the Euler–Lagrange equations are given in proposition 4.2, and the augmented potential takes
the form

Uξ⊕η(X) := U(X) − 1
2 〈ξ ⊕ η,BX(ξ ⊕ η)〉so(n)⊕so(n), (8.12)
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where the second term of the right-hand side of the above comes from the second term of the
right-hand side of (7.18). In fact, we can verify this fact by using proposition 4.2. We note
here that the Euler–Lagrange equations in proposition 4.2 are now rewritten as

d

dt
Ȧ = ∂

∂A
(K − U), (8.13a)

d

dt
BA(
 ⊕ �) = [BA(
 ⊕ �),
 ⊕ �]. (8.13b)

In the rest of this section, we look into equation (8.6). As is easily seen, this equation is
satisfied by eigenvectors of the symmetric operator BA0 , which are easily found by calculation.
Let ξ = (ξij ). Then, AL

A0
(ξ) = AR

A0
(ξ) = ((

a2
i +a2

j

)
ξij

)
and AdA0(ξ) = Ad�

A0
(ξ) = (aiaj ξij ).

Hence, we have

BA0

(
ξ

η

)
=
( (

a2
i + a2

j

)
ξij − 2aiajηij

−2aiaj ξij +
(
a2

i + a2
j

)
ηij

)
. (8.14)

Let eij with i < j be the standard basis of so(n), i.e. the (i, j) and (j, i) components of eij are
1 and −1, respectively, and the others vanish. Then, the above equation provides

BA0

(
eij

eij

)
= (ai − aj )

2

(
eij

eij

)
, BA0

(
eij

−eij

)
= (ai + aj )

2

(
eij

−eij

)
, (8.15)

which shows that eij ⊕ eij and eij ⊕ (−eij ) are eigenvectors of BA0 , where i < j . Since
dim(so(n) ⊕ so(n)) = n(n − 1), and since these vectors are linearly independent, we have
found all the eigenvectors for BA0 with A0 ∈ Ṗ .

Condition (8.6) may be satisfied by vectors other than the eigenvectors of BA0 as is shown
below. Let λ and λ′ be distinct eigenvalues of BA0 and ξ ⊕ η and ξ ′ ⊕ η′ respective associated
eigenvectors; BA0(ξ ⊕ η) = λ(ξ ⊕ η) and BA0(ξ

′ ⊕ η′) = λ′(ξ ′ ⊕ η′) with λ �= λ′. Then, a
straightforward calculation provides

[ξ ⊕ η + ξ ′ ⊕ η′,BA0(ξ ⊕ η + ξ ′ ⊕ η′)] = (λ′ − λ)([ξ, ξ ′] ⊕ [η, η′]). (8.16)

If [ξ, ξ ′] = [η, η′] = 0, the right-hand side of the above equation vanishes, so that (8.6) is
satisfied by (ξ +ξ ′)⊕ (η+η′). Incidentally, for the standard basis eij of so(n), the commutation
relations are given by

[eij , ek�] = ei�δjk + ejkδi� − eikδj� − ej�δik. (8.17)

Hence, one has [eij , ek�] = 0 if i, j, k, � are distinct to one another. This occurs if n � 4.
Thus, for a linear combination of the eigenvectors eij ⊕ eij and ek� ⊕ ek� with i, j, k, � distinct
to one another, we have, for example,[(

eij

eij

)
+

(
ek�

ek�

)
,BA0

((
eij

eij

)
+

(
ek�

ek�

))]
= (

(ak − a�)
2 − (ai − aj )

2
) ([eij , ek�]

[eij , ek�]

)
= 0.

(8.18)

The stability of the Riemann ellipsoid in three dimensions is studied in [22]. As for relative
equilibria for the generalized rigid body, see [23], in which the left-invariant Lagrangian
system on the tangent bundle of a Lie group is discussed. Proposition 8.1 is an extension of a
proposition [23] on the relative equilibrium of the generalized rigid body.
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9. Concluding remarks

In section 3, we mentioned that the right SO(n) action is associated with particle relabeling.
In the case of identical N particles in Rn, we deal with the set, Rn×(N−1), of real n × (N − 1)

matrices, which is isomorphic with the center-of-mass system. The particle exchange is
expressed as the action of the symmetric group SN on Rn×(N−1) to the right in the form of
an irreducible representation of SN in O(N − 1) (see [24] for particle exchange symmetry in
quantum mechanics).

In section 3, we further carried out the reduction procedure for the pseudo-rigid body by
the right SO(n) symmetry in the Lagrangian formalism. However, the Poisson formalism
works in the reduction procedure as well. In [3, 4], the commutation relations (or the Poisson
structure)

{Qij ,Qk�} = 0, {Qij ,Nk�} = δi�Qjk + δj�Qik, {Nij ,Nk�} = δi�Nkj − δjkNi�

(9.1)

are used to obtain the reduced system on T (P)/SO(n). The semi-direct product reduction
[25] is performed in three dimensions [4] by using the semi-direct product group GL+(3, R)�

Sym(3, R). A similar model has been studied under the name of collective models [26]. We
note that the collective model comes from the idea of collective states for a nucleus model.
For example, for the study of nuclear collective states, the SL(3, R) � Sym(3, R) is treated in
[27, 28], and the group O(3) × O(N − 1) acting on R3×(N−1) is studied in [29]. There are a
variety of groups associated with collective states, which are out of the scope of the present
paper.

In section 4, we used the local coordinates (R,A, S,
, Ȧ,�). As is stated in
section 6.1, Ȧ is viewed as the horizontal velocity and (
,�) as the vertical (angular) velocity
with respect to the SO(n) × SO(n) action. Since the bi-connection ωB is flat, the velocity
shift [20] is not needed, and hence the reduced Euler–Lagrange equations look the same as
the Hammel equation [20]. In our case, the transformation group is G = SO(n) × SO(n)

and the action of G is not free, so that Ṗ is not made into a fiber bundle. However, the
isotropy subgroup is finite on Ṗ and hence the reduction procedure works well with a slight
modification.

In section 6, we treated the isotropy subgroup on the principal stratum Ṗ . We here write
out the isotropy subgroups on the whole P for n = 3. Depending on types of singular values,
the isotropy subgroups are given by

GA �

⎧⎪⎨⎪⎩
(Z2)

2 for (i) a1 > a2 > a3 > 0,

S(O(2) × Z2) for (ii) a1 = a2 > a3, or a1 > a2 = a3 > 0,

SO(3), for (iii) a1 = a2 = a3 > 0,

(9.2)

where S(O(2) × Z2) denotes the set of matrices of the form
(k 0

0 ε

)
with k ∈ O(2), ε = ±1

and ε det(k) = 1. The orbit spaces G/GA are determined accordingly, and the dimensions of
the vertical and horizontal subspaces are given, respectively, by

(dim VX, dim HX) =

⎧⎪⎨⎪⎩
(6, 3) for (i),

(5, 4) for (ii),

(3, 6) for (iii).

(9.3)

In general, the group action on the space of rectangular matrices is classified according
to types of singular values of matrices. With this idea, the left action of SO(3) on R3×(N−1) is
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treated in [30] for the study of multi-particle systems, and the two-sided action of U(p)×U(q)

on Cp×q is studied in relation to multi-qubit entanglement [31].
We performed the reduction procedure with the right SO(n) symmetry in

section 3. It is needless to say that one can perform the reduction procedure through the
left SO(n) symmetry to obtain a system on SO(n)\T (P) in the same manner as that for
T (P)/SO(n). The conservation law associated with the left SO(n) symmetry is the angular
momentum. With respect to the left SO(n) symmetry (with n = 3), the stability of relative
equilibria of the pseudo-rigid bodies is extensively studied in [32].

The reduction procedure by the left SO(n) symmetry has been used in many-body
dynamical systems with n = 3 [33] by using the Guichardet connection, and studied in
detail in terms of local coordinates with insight into stratification and boundary behaviors
[34, 35].

If the reduced system on T (P)/SO(n) admits further the left SO(n) symmetry, we
would be able to perform the reduction procedure to obtain a further reduced system on
SO(n)\T (P)/SO(n). However, we have difficulty in this stage. Let Q and N be the
same as in section 3. They admit the left SO(n) action, Q �→ gQg−1, N �→ gNg−1

with g ∈ SO(n). However, this action is not free, so we cannot expect SO(n)\T (P)/SO(n)

to be a manifold. However, if we restrict ourselves to Ṗ , we will be able to obtain a reduced
system on SO(n)\T (Ṗ)/SO(n). The reduced space will be isomorphic with that stated in
theorem 7.1. It is a point to make that the action of SO(n) × SO(n) on Ṗ and hence on T (Ṗ)

is not free, but the isotropy subgroup is a finite discrete group. See [11, 12] for the commuting
reduction theorem, which is proved on the assumption that the product Lie group acts freely
and properly on the cotangent bundle.
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